Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Pest Manag Sci ; 80(3): 1193-1205, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888855

RESUMEN

BACKGROUND: Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS: Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION: Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , Metarhizium , Oryza , Virus de Plantas , Reoviridae , Animales , Metarhizium/fisiología , Hemípteros/fisiología , ARN Bicatenario , Inmunidad , Oryza/genética
2.
Pest Manag Sci ; 80(2): 820-836, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794279

RESUMEN

BACKGROUND: The fungal genera Metarhizium contain many important multiple species that are used as biocontrol agents and as model organisms for exploring insect-fungal interactions. Metarhizium spp. exhibit different traits of pathogenicity, suggesting that the pathogenesis can be quite distinctive. However, the underlying differences in their pathogenesis remain poorly understood. RESULTS: Pathogenicity analysis showed that Metarhizium anisopliae (strain CQMa421) displayed higher virulence against oriental migratory locusts, Locusta migratoria manilensis (Meyen), than the acridid-specific specie Metarhizium acridum (strain CQMa102). Relative to M. acridum, M. anisopliae possessed a higher conidial hydrophobicity, increased ability to penetrate the host, accelerated growth under hypoxia and enhanced ability for the utilization of different carbon sources. Different distributions of carbohydrate epitopes at cell wall surface of M. anisopliae might also contribute to successful evasion of host immune defenses. Comparative genomics showed that M. anisopliae has 98 more virulence-related secreted proteins (133) than M. acridum (35), which can be functionally classified as hydrolases, virulence effectors, cell wall degradation and stress tolerance-related proteins, and helpful to the cuticle penetration and host internal environment adaption. In addition, differences in genomic clusters specifically related to secondary metabolites, including the clusters of Indole-NRPS hybrid, T1PKS-NRPS like hybrid, Betalactone, Fungal-Ripp and NRPS-Terpene hybrid, may lead to differences in core virulence-related secondary metabolite genes in M. acridum (18) and M. anisopliae (36). CONCLUSION: The comparative study provided new insights into the different infection strategies between M. anisopliae and M. acridum, and further facilitate the identification of virulence-related genes for the improvement of mycoinsecticides. © 2023 Society of Chemical Industry.


Asunto(s)
Metarhizium , Virulencia , Metarhizium/fisiología , Genómica
3.
Fungal Biol ; 127(12): 1544-1550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38097328

RESUMEN

Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.


Asunto(s)
Metarhizium , Metarhizium/fisiología , Rojo Congo , Rayos Ultravioleta , Esporas Fúngicas/fisiología
4.
PLoS One ; 18(11): e0289143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011108

RESUMEN

To defend against damage from environmental stress, plants have evolved strategies to respond to stress efficiently. One such strategy includes forming mutualist relationships with endophytes which confer stress-alleviating plant defensive and growth promoting effects. Metarhizium robertsii is an entomopathogen and plant-protective and growth-promoting endophyte. To determine the context dependency of the relationship between M. robertsii and maize, we conducted a greenhouse experiment that imposed stress as deficit and excess soil moisture on maize plants which were inoculated or not inoculated with M. robertsii and measured plant growth and defense indicators. Maize height and endophytic root colonization by M. robertsii were positively correlated in the deficit water treatment, but not in the adequate or excess water treatments. The relative expression of ZmLOX1 in the jasmonic acid (JA) biosynthesis pathway was significantly greater in M. robertsii-inoculated than in non-inoculated plants, but water treatment had no effect. There was significant interaction between M. robertsii and water treatments on foliar concentrations of JA and jasmonoyl isoleucine (JA-ILE), suggesting that water stress impacts M. robertsii as a modulator of plant defense. Water stress, but not inoculation with M. robertsii, had a significant effect on the expression of MYB (p = 0.021) and foliar concentrations of abscisic acid (p<0.001), two signaling molecules associated with abiotic stress response. This study contributes toward understanding the highly sophisticated stress response signaling network and context dependency of endophytic mutualisms in crops.


Asunto(s)
Metarhizium , Zea mays , Deshidratación , Metarhizium/fisiología , Productos Agrícolas
5.
J Invertebr Pathol ; 198: 107916, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004917

RESUMEN

Culex pipiens (Diptera: Culicidae) is a vector of many human and animal diseases. Its control is regarded as a preventative approach that is focused on effectively managing such diseases. In this context, dose response assays of two insecticides, bendiocarb and diflubenzuron were performed with two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae against 3rd instar C. pipiens larvae. The most effective agents, combination experiments as well as enzymatic activities of phenoloxidase (PO) and chitinase (CHI) were also assessed. The results showed that diflubenzuron was more effective at low concentrations (LC50: 0.001 ppm) than bendiocarb (LC50: 0.174 ppm), whereas M. anisopliae was more effective (LC50: 5.2 × 105 conidia/mL) than B. bassiana (LC50: 7.5 × 107 conidia/mL). Synergistic interactions were observed when diflubenzuron was applied at 2- and 4-days post- exposure to M. anisopliae, with the highest degree of synergism observed when diflubenzuron was applied 2 days post-fungal exposure (χ2 = 5.77). In contrast, additive interactions were recorded with all other insecticide-fungal combinations. PO activities significantly (p ≤ 0.05) increased during 24 h after a single diflubenzuron treatment as well as when diflubenzuron was applied prior to M. anisopliae, whereas suppressed after 24 h when M. anisopliae applied prior to diflubenzuron as well as after 48 h from single and combined treatments. CHI activity increased 24 h after both single and combined treatments, the activity remained elevated 48 h after a single diflubenzuron treatment and when diflubenzuron was applied after M. anisopliae. Histological study of the cuticle by transmission electron microscopy revealed abnormalities following single and combined treatments. Germination of the conidia and production of the mycelium that colonizes the lysing cuticle was obvious when diflubenzuron was applied 48 h after M. anisopliae exposure. Overall, these results demonstrate that M. anisopliae is compatible with diflubenzuron at lower concentrations and that combined applications can improve C. pipiens management.


Asunto(s)
Beauveria , Culex , Diflubenzurón , Insecticidas , Metarhizium , Humanos , Animales , Insecticidas/farmacología , Control Biológico de Vectores/métodos , Diflubenzurón/farmacología , Mosquitos Vectores , Larva/microbiología , Beauveria/fisiología , Metarhizium/fisiología
6.
Vet Parasitol ; 317: 109906, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940590

RESUMEN

Argas persicus is an important ectoparasite of domestic fowl that causes heavy economic losses to the poultry industry. The present study was carried out to compare and assess the effects induced by spraying the fungi Beauveria bassiana and Metarhizium anisopliae separately, on the mobility and viability of semifed adult A. persicus, also to follow the histopathological effect induced by a selected concentration of 1010 conidia/ml of B. bassiana on the integument. Biological studies revealed a more or less similar pattern of response in adults treated with either of the two fungi (Increasing concentration resulting in more death along with examined period). As the estimated LC50 and LC95 of B. bassiana were recorded 5 × 109 and 4.6 × 1012 conidia/ml, respectively, and for M. anisopliae were 3 × 1011 and 2.7 × 1016 conidia/ml respectively, the fungus B. bassiana was more efficient than M. anisopliae when applied at the same concentrations. The study revealed that spraying of Beauveria at 1012 conidia/ml is sufficient to control A. persicus as it recorded 100% efficacy, so it might be selected to be the effective dose. Histological investigation of the integument treated with B. bassiana revealed the dispersal of the hyphal network on the after 11 days of treatment, accompanied by other changes. Results from our study verify the susceptibility of A. persicus to the pathogenic effect induced by spraying B. bassiana, which is sufficient for its control with the recording better results.


Asunto(s)
Argas , Beauveria , Metarhizium , Animales , Beauveria/fisiología , Metarhizium/fisiología , Control Biológico de Vectores/métodos , Piel , Esporas Fúngicas , Aves de Corral
7.
J Invertebr Pathol ; 197: 107898, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36806464

RESUMEN

Aedes aegypti, an important vector of viral diseases affecting humans in the tropics, generally oviposits just above the water line of small artificial bodies of water. Within the first hours after being deposited eggs are highly susceptible to desiccation, and the chorion undergoes profound processes of sclerotization. Most uneclosed eggs remain viable for months, and their susceptibility to entomopathogenic fungi turns them into reasonable targets for focal control strategies. This study explored the sensitivity of newly deposited eggs to Metarhizium humberi IP 46 conidia. Immediate exposure of eggs oviposited onto a wet, conidium-treated substrate or application of conidia onto eggs within the first 72h after deposition revealed no clearly higher ovicidal effect caused by pre-germinating or germinating conidia or by further fungal development during this initial phase of chorionic sclerotization and embryogenesis than occurs on fully sclerotized eggs. Fungal application techniques, whether direct or indirect, seemed to matter little at the low concentrations applied here; using higher conidial concentrations of the entomopathogen might yield greater mortality of eggs regardless of their physiological age. Quite apart from the data on the biocontrol potential of M. humberi against A. aegypti eggs, these studies demonstrate that the bleaching of highly melanized egg chorions allows detailed visualization of early events of pathogenic fungal attachment, germination, penetration, and initial development inside a target insect.


Asunto(s)
Aedes , Metarhizium , Humanos , Animales , Control Biológico de Vectores/métodos , Aedes/microbiología , Mosquitos Vectores , Metarhizium/fisiología , Esporas Fúngicas , Agua , Larva/microbiología
8.
Pest Manag Sci ; 79(6): 2191-2205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36746852

RESUMEN

BACKGROUND: Heortia vitessoides Moore is a severe pest of Aquilaria sinensis (Lour.) Gilg, an important source of agarwood. In recent years, large amounts of chemical insecticides have been applied in A. sinensis plantations to deal with the outbreak of H. vitessoides, causing residue problems that reduce the quality and price of agarwood. Herein, we hypothesize that the widely applied biocontrol agent, Metarhizium anisopliae (Metschn.) Sorokin, can effectively kill the gregarious larvae of H. vitessoides through direct contact and horizontal transmission. RESULTS: At the concentration of 1 × 109 conidia/mL, the three M. anisopliae strains caused 100% mortality of H. vitessoides larvae. In addition, mixing donor larvae (previously treated with M. anisopliae conidia) with receptor larvae (which did not directly contact M. anisopliae conidia) caused significantly higher mortality of receptor larvae than the control receptors. This is due to the horizontal transmission of M. anisopliae conidia among live larvae, which was proven by pictures taken by scanning electron microscopy and induced activities of immunity-related enzymes of donor and receptor larvae. Behavioral bioassays showed that M. anisopliae conidia had little effect on the aggregation tendency of H. vitessoides larvae but may trigger feeding-avoidance behavior depending on M. anisopliae strains and concentrations. Interestingly, joint use of sublethal concentrations of M. anisopliae and chemical insecticides significantly increased larval mortality than each agent alone, indicating synergistic effects between M. anisopliae and insecticide against H. vitessoides. CONCLUSION: This study may provide a new strategy to suppress H. vitessoides population and reduce the use of chemical insecticides. © 2023 Society of Chemical Industry.


Asunto(s)
Insecticidas , Lepidópteros , Metarhizium , Animales , Larva , Insecticidas/farmacología , Metarhizium/fisiología , Brotes de Enfermedades , Esporas Fúngicas
9.
Nat Ecol Evol ; 7(3): 450-460, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732670

RESUMEN

Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers' detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.


Asunto(s)
Hormigas , Metarhizium , Humanos , Animales , Metarhizium/fisiología , Insectos , Aseo Animal
10.
J Econ Entomol ; 116(1): 108-118, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36575909

RESUMEN

Entomopathogenic fungi (EPF) represent promising control agents against wireworms but success in field experiments is inconsistent. The physiological condition of the targeted insect is crucial for its ability to withstand fungal infection. In particular, nutritional status is among the most important determinants of the insects' immune defense. In this study, we investigated the effects of diet on the development of the wireworm Agriotes obscurus (L.) (Coleoptera: Elateridae) and its subsequent susceptibility to the fungal pathogen Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) in a pot experiment. After being reared on one of five plant diets for eight weeks, wireworms were exposed to an environment inoculated with the EPF and monitored for their susceptibility to fungal infection. We then performed a field experiment in which three plant diets (clover, radish, and a cover crop mix), selected according to the insects' performance in the laboratory experiment, were grown as a cover crop with EPF application. Plant diet influenced growth and development of larvae, but there were no strong differences in susceptibility toward fungal infection in the laboratory experiment. Damage levels in EPF-treated plots in the field varied depending on the cover crop. Damage was highest in plots planted with a mix of cover crop species, whereas damage was lowest in plots with clover or radish alone. This agrees with the laboratory results where insect performance was inferior when fed on clover or radish. Cover crop effects on wireworm damage in the subsequent cash crop may thus vary depending on the cover crop species selected.


Asunto(s)
Brassicaceae , Escarabajos , Hypocreales , Metarhizium , Micosis , Animales , Control Biológico de Vectores/métodos , Metarhizium/fisiología , Escarabajos/microbiología , Larva/microbiología , Dieta
11.
J Adv Res ; 48: 1-16, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36064181

RESUMEN

INTRODUCTION: Odorant-binding proteins (OBPs) are a class of small molecular weight soluble proteins that exist as expanded gene families in all insects, acting as ligand carriers mediating olfaction and other physiological processes. During fungal infection, a subset of insect OBPs were shown to be differentially expressed. OBJECTIVES: We tested whether the altered expression of insect OBPs during pathogenic infection plays a role in behavioral or immune interactions between insect hosts and their pathogens. METHODS: A wide range of techniques including RNAi-directed knockdown, heterologous protein expression, electrophysiological/behavioral analyses, transcriptomics, gut microbiome analyses, coupled with tandem mass spectrometry ion monitoring, were used to characterize the function of a locust OBP in host behavioral and immune responses. RESULTS: The entomopathogenic fungus Metarhizium anisopliae produces the volatile compound phenylethyl alcohol (PEA) that causes behavioral avoidance in locusts. This is mediated by the locust odorant binding protein 11 (LmOBP11). Expression of LmOBP11 is induced by M. anisopliae infection and PEA treatment. LmOBP11 participates in insect detection of the fungal-produced PEA and avoidance of PEA-contaminated food, but the upregulation of LmOBP11 upon M. anisopliae infection negatively affects the insect immune responses to ultimately benefit successful mycosis by the pathogen. RNAi knockdown of LmOBP11 increases the production of antimicrobial peptides and enhances locust resistance to M. anisopliae infection, while reducing host antennal electrophysiological responses to PEA and locust avoidance of PEA treated food. Also, transcriptomic and gut microbiome analyses reveal microbiome dysbiosis and changes in host genes involved in behavior and immunity. These results are consistent with the elevated expression of LmOBP11 leading to enhanced volatile detection and suppression of immune responses. CONCLUSION: These findings suggest a crosstalk between olfaction and immunity, indicating manipulation of host OBPs as a novel target exploited by fungal pathogens to alter immune activation and thus promote the successful infection of the host.


Asunto(s)
Saltamontes , Metarhizium , Micosis , Animales , Odorantes , Insectos/microbiología , Saltamontes/microbiología , Metarhizium/fisiología , Inmunidad Innata
12.
Insect Sci ; 30(1): 185-196, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35567495

RESUMEN

Termites have physiological and behavioral immunities that make them highly resistant to pathogen infections, which complicates biocontrol efforts. However, the stimuli that trigger the pathogen-avoidance behaviors of termites are still unclear. Our study shows that workers of Coptotermes formosanus exposed to the conidia of Metarhizium anisopliae exhibited a significantly higher frequency and longer duration of allogrooming behaviors compared with untreated termites. Volatile compounds in the cuticle of control termites and termites previously exposed to a suspension of M. anisopliae conidia were analyzed and compared using a gas chromatography-mass spectrometer (GC-MS). Our results showed that the amount of ergosterol differed between the fungus-exposed and control termites. Choice tests showed that termites significantly preferred to stay on filter paper treated with ergosterol (0.05, 0.1, or 1.0 mg/mL) compared with control filter paper. In addition, termites exposed to ergosterol followed by M. anisopliae conidia were allogroomed at a significantly higher frequency and for a longer duration than termites exposed to alcohol (the solvent used with the ergosterol in the ergosterol trials) alone followed by M. anisopliae conidia. These results showed that ergosterol may enhance the allogrooming behavior of termites in the presence of entomopathogenic fungi.


Asunto(s)
Isópteros , Metarhizium , Animales , Metarhizium/fisiología , Isópteros/fisiología , Conducta Animal , Esporas Fúngicas
13.
J Invertebr Pathol ; 194: 107827, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36108793

RESUMEN

Aedes aegypti transmits arbovirus, which is a public health concern. Certain filamentous fungi have the potential to control the disease. Here, the effects of Metarhizium anisopliae s.l. CG 153, Beauveria bassiana s.l. CG 206 and Schinus molle L. were investigated against Aedes aegypti larvae. In addition, the effect of essential oil on fungal development was analyzed. Fungal germination was assessed after combination with essential oil at 0.0025 %, 0.0075 %, 0.005 %, or 0.01 %; all of the oil concentrations affected germination except 0.0025 % (v/v). Larvae were exposed to 0.0025 %, 0.0075 %, 0.005 %, or 0.01 % of the essential oil or Tween 80 at 0.01 %; however, only the essential oil at 0.0025 % achieved similar results as the control. Larvae were exposed to fungi at 107 conidia mL-1 alone or in combination with the essential oil at 0.0025 %. Regardless of the combination, M. anisopliae reduced the median survival time of mosquitoes more than B. bassiana. The cumulative survival of mosquitoes exposed to M. anisopliae alone or in combination with essential oil was 7.5 % and 2 %, respectively, and for B. bassiana, it was 75 % and 71 %, respectively. M. anisopliae + essential oil had a synergistic effect against larvae, whereas B. bassiana + essential oil was antagonistic. Scanning and transmission electron microscopy, and histopathology confirmed that the interaction of M. anisopliae was through the gut and hemocoel. In contrast, the mosquito's gut was the main route for invasion by B. bassiana. Results from gas chromatography studies demonstrated sabinene and bicyclogermacrene as the main compounds of S. molle, and the in-silico investigation found evidence that both compounds affect a wide range of biological activity. For the first time, we demonstrated the potential of S. molle and its interaction with both fungal strains against A. aegypti larvae. Moreover, for the first time, we reported that S. molle might be responsible for significant changes in larval physiology. This study provides new insights into host-pathogen interplay and contributes to a better understanding of pathogenesis in mosquitoes, which have significant consequences for biological control strategies.


Asunto(s)
Aedes , Anacardiaceae , Beauveria , Metarhizium , Aceites Volátiles , Aedes/microbiología , Animales , Beauveria/fisiología , Larva/microbiología , Metarhizium/fisiología , Aceites Volátiles/farmacología , Control Biológico de Vectores/métodos , Polisorbatos/farmacología
14.
J Med Entomol ; 59(5): 1732-1740, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35938709

RESUMEN

Aedes aegypti mosquitoes are capable of vectoring a wide range of diseases including dengue, yellow fever, and Zika viruses, with approximately half of the worlds' population at risk from such diseases. Development of combined predator-parasite treatments for the control of larvae consistently demonstrates increased efficacy over single-agent treatments, however, the mechanism behind the interaction remains unknown. Treatments using the natural predator Toxorhynchites brevipalpis and the entomopathogenic fungus Metarhizium brunneum were applied in the laboratory against Ae. aegypti larvae as both individual and combined treatments to determine the levels of interaction between control strategies. Parallel experiments involved the removal of larvae from test arenas at set intervals during the course of the trial to record whole body caspase and phenoloxidase activities. This was measured via luminometric assay to measure larval stress factors underlying the interactions. Combined Metarhizium and Toxorhynchites treatments were seen to drastically reduce lethal times as compared to individual treatments. This was accompanied by increased phenoloxidase and caspase activities in combination treatments after 18 h (p < 0.001). The sharp increases in caspase and phenoloxidase activities suggest that combined treatments act to increase stress factor responses in the larvae that result in rapid mortality above that of either control agent individually. This work concludes that the underlying mechanism for increased lethality in combined parasite-predator treatments may be related to additive stress factors induced within the target host larvae.


Asunto(s)
Aedes , Culicidae , Hypocreales , Metarhizium , Infección por el Virus Zika , Virus Zika , Aedes/fisiología , Animales , Caspasas , Larva/fisiología , Metarhizium/fisiología , Monofenol Monooxigenasa , Control de Mosquitos
15.
J Invertebr Pathol ; 194: 107824, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030047

RESUMEN

Fungal entomopathogens can greatly reduce the fitness of their hosts, and it is therefore expected that susceptible insects will be selected to avoid exposure to pathogens. Metarhizium brunneum is a fungal pathogen that can infect Agriotes obscurus, which in its larval form is a destructive agricultural pest and is repelled by the presence of M. brunneum conidia. Due to the subterranean nature of larval A. obscurus, recent research has focused on targeting adult A. obscurus with M. brunneum. No-choice and choice behavioural assays were conducted to determine if male adult A. obscurus avoid M. brunneum mycosed cadavers, or conidia applied to either food or soil. To further investigate the response of A. obscurus beetles to conspecific cadavers, the movement and behaviour of beetles placed at the centre of a semi-circular arrangement of mycosed or control cadavers was examined using motion tracking software. We found little evidence to suggest that A. obscurus male beetles avoid M. brunneum conidia or mycosed conspecific cadavers or alter their behaviour in their presence.


Asunto(s)
Escarabajos , Metarhizium , Animales , Cadáver , Escarabajos/microbiología , Larva/microbiología , Masculino , Metarhizium/fisiología , Control Biológico de Vectores , Suelo , Esporas Fúngicas
16.
Pest Manag Sci ; 78(8): 3676-3684, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35613131

RESUMEN

BACKGROUND: CreA has been proved to be a core gene in asexual conidiation in Metarhizium acridum, which regulates the shift of normal conidiation and microcycle conidiation. At present, research on CreA in fungi has focused on carbon source metabolism. There is a lack of research on the effect of CreA in virulence of pathogenic fungi. RESULTS: The virulence of the MaCreA disrupted strain (ΔMaCreA) for Locusta migratoria was lost by topical inoculation bioassay. The formation rate and turgor pressure of the appressoria decreased. Growth of ΔMaCreA in host hemolymph was delayed, and the number of hyphal bodies was significantly reduced. The conidial cell wall of ΔMaCreA became thicker, the mannan content decreased, and the chitin content increased significantly, and it was more sensitive to calcofluor white and Congo Red. α-1,3-Glucan and ß-1,3-glucan are more exposed on the surface of ΔMaCreA conidia than on the wild type. Lmspätzle and Lmcactus, the immune response genes in the host Toll pathway, showed stronger transcriptional activities at the early stage of ΔMaCreA invasion. The phenoloxidase activity assay also showed stronger immunostimulation by ΔMaCreA in vitro. CONCLUSION: The main reasons for the loss of virulence of ΔMaCreA in the topical inoculation were the reduced penetration ability of appressoria, limited growth in hemolymph and stronger insect immunostimulation of ΔMaCreA. © 2022 Society of Chemical Industry.


Asunto(s)
Locusta migratoria , Metarhizium , Animales , Carbono , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Locusta migratoria/microbiología , Metarhizium/fisiología , Esporas Fúngicas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Arch Insect Biochem Physiol ; 110(3): e21908, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35470484

RESUMEN

Entomopathogenic fungus as biological control agent plays a crucial role in the integrated management of insect pests. Metarhizium anisopliae Ma6 has been identified as a highly pathogenic strain against Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae), one of the most economically important and dominant insect pests damaging Brassica plants. The infection of M. anisopliae Ma6 on P. striolata was observed under stereomicroscopy and scanning electron microscopy (SEM), and biochemical defense responses of P. striolata adults after infection were investigated. The changes in total amino acids and free fatty acids, and the activities of protective enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in P. striolata adults were measured. In stereomicroscopy and SEM observations, a large number of mycelia were observed on the body surface of P. striolata on the 5th day after treatment by M. anisopliae. Many conidia were germinated and covered the body of P. striolata on the 7th day after treatment. The free fatty acid, total amino acid, CAT, POD, and SOD activities all showed an increased and then decreased trend. These results suggest that entomopathogenic fungal infection triggers the defense response of hosts, which induces changes in nutrients and antioxidant enzymes in P. striolata adults. Our findings provide useful information for understanding the potential for using M. anisopliae Ma6 as a biocontrol agent.


Asunto(s)
Escarabajos , Metarhizium , Animales , Metarhizium/fisiología , Control Biológico de Vectores , Superóxido Dismutasa
18.
Pest Manag Sci ; 78(5): 2065-2073, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35137527

RESUMEN

BACKGROUND: Due to the rapid rise in arboviral disease cases, there is a need for alternative methods of vector control since fast growing insecticides resistance is a matter of great concern. Recent studies have shown the potential of entomopathogenic fungi in controlling mosquito vectors, but behavioural responses of the mosquitoes encountering with entomopathogenic fungi are still unclear. RESULTS: In this study, behavioural responses induced by the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin in adult female Aedes aegypti mosquito were evaluated. The survival of female mosquitoes was significantly reduced after exposure to medium and high concentrations of fungal conidia. A significant increase in frequencies and durations of different self-grooming types was observed in mosquitoes exposed to medium or high concentrations of fungal conidia. Mosquitoes were able to differentiate between active and inactive fungal conidia as application of inactive conidia showed non-significant effect on survival and self-grooming parameters. A concentration-specific reduction in flight locomotor activity of the female mosquitoes was found after fungal treatments. Fungal-exposed mosquitoes showed significantly higher antifungal activity 72 h post-application. CONCLUSION: These findings provide greater understanding of behavioural responses of the mosquitoes to resist fungal infections and suggest that mosquitoes can remove the lower amounts of fungal conidia through self-grooming behaviour, which they encounter within natural field conditions.


Asunto(s)
Aedes , Metarhizium , Micosis , Animales , Femenino , Metarhizium/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores , Control Biológico de Vectores/métodos , Esporas Fúngicas
19.
Arch Microbiol ; 204(1): 83, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34958400

RESUMEN

White light during mycelial growth influences high conidial stress tolerance of the insect-pathogenic fungus Metarhizium robertsii, but little is known if low- or high-white light irradiances induce different stress tolerances. The fungus was grown either in the dark using two culture media: on minimal medium (Czapek medium without sucrose = MM) or on potato dextrose agar (PDA) or PDA medium under five different continuous white light irradiances. The stress tolerances of conidia produced on all treatments were evaluated by conidial germination on PDA supplemented with KCl for osmotic stress or on PDA supplemented with menadione for oxidative stress. Conidia produced on MM in the dark were more tolerant to osmotic and oxidative stress than conidia produced on PDA in the dark or under the light. For osmotic stress, growth under the lower to higher irradiances produced conidia with similar tolerances but more tolerant than conidia produced in the dark. For oxidative stress, conidia produced under the white light irradiances were generally more tolerant to menadione than conidia produced in the dark. Moreover, conidia produced in the dark germinated at the same speed when incubated in the dark or under lower irradiance treatment. However, at higher irradiance, conidial germination was delayed compared to germination in the dark, which germinated faster. Therefore, growth under light from low to high irradiances induces similar conidial higher stress tolerances; however, higher white light irradiances cause a delay in germination speed.


Asunto(s)
Luz , Metarhizium , Metarhizium/fisiología , Metarhizium/efectos de la radiación , Presión Osmótica , Estrés Oxidativo , Esporas Fúngicas/efectos de la radiación
20.
mBio ; 12(6): e0188521, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933458

RESUMEN

Many fungus-growing ants engage in a defensive symbiosis with antibiotic-producing ectosymbiotic bacteria in the genus Pseudonocardia, which help protect the ants' fungal mutualist from a specialized mycoparasite, Escovopsis. Here, using germfree ant rearing and experimental pathogen infection treatments, we evaluate if Acromyrmex ants derive higher immunity to the entomopathogenic fungus Metarhizium anisopliae from their Pseudonocardia symbionts. We further examine the ecological dynamics and defensive capacities of Pseudonocardia against M. anisopliae across seven different Acromyrmex species by controlling Pseudonocardia acquisition using ant-nonnative Pseudonocardia switches, in vitro challenges, and in situ mass spectrometry imaging (MSI). We show that Pseudonocardia protects the ants against M. anisopliae across different Acromyrmex species and appears to afford higher protection than metapleural gland (MG) secretions. Although Acromyrmex echinatior ants with nonnative Pseudonocardia symbionts receive protection from M. anisopliae regardless of the strain acquired compared with Pseudonocardia-free conditions, we find significant variation in the degree of protection conferred by different Pseudonocardia strains. Additionally, when ants were reared in Pseudonocardia-free conditions, some species exhibit more susceptibility to M. anisopliae than others, indicating that some ant species depend more on defensive symbionts than others. In vitro challenge experiments indicate that Pseudonocardia reduces Metarhizium conidiospore germination area. Our chemometric analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals that Pseudonocardia-carrying ants produce more chemical signals than Pseudonocardia-free treatments, indicating that Pseudonocardia produces bioactive metabolites on the Acromyrmex cuticle. Our results indicate that Pseudonocardia can serve as a dual-purpose defensive symbiont, conferring increased immunity for both the obligate fungal mutualist and the ants themselves. IMPORTANCE In some plants and animals, beneficial microbes mediate host immune response against pathogens, including by serving as defensive symbionts that produce antimicrobial compounds. Defensive symbionts are known in several insects, including some leaf-cutter ants where antifungal-producing Actinobacteria help protect the fungal mutualist of the ants from specialized mycoparasites. In many defensive symbioses, the extent and specificity of defensive benefits received by the host are poorly understood. Here, using "aposymbiotic" rearing, symbiont switching experiments, and imaging mass spectrometry, we explore the ecological and chemical dynamics of the model defensive symbiosis between Acromyrmex ants and their defensive symbiotic bacterium Pseudonocardia. We show that the defensive symbiont not only protects the fungal crop of Acromyrmex but also provides protection from fungal pathogens that infect the ant workers themselves. Furthermore, we reveal that the increased immunity to pathogen infection differs among strains of defensive symbionts and that the degree of reliance on a defensive symbiont for protection varies across congeneric ant species. Taken together, our results suggest that Acromyrmex-associated Pseudonocardia have evolved broad antimicrobial defenses that promote strong immunity to diverse fungal pathogens within the ancient fungus-growing ant-microbe symbiosis.


Asunto(s)
Hormigas/microbiología , Metarhizium/fisiología , Pseudonocardia/fisiología , Simbiosis , Animales , Hormigas/química , Hormigas/inmunología , Hormigas/fisiología , Quimiometría , Espectrometría de Masas , Pseudonocardia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...